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Dynamic Imaging

Fig.1. Dynamic responses of different micro-expressions.



Short Falls in Conventional 
Networks

• As dynamic images of micro expressions hold minute variations within the
image sequences, existing networks like VGG-16, VGG-19 [12] and ResNet
[15] fail to spot these variations.

• These networks usually follow sequential coupling mechanism with dense
depth maps. Such an approach sometimes ignore the minute features
favoring more visually distinguishable features.

• Conventional CNN-based networks are uses max polling to down sample
the input image. Pooling layer extracts the maximum response features by
the performing max operation over embedded filters. Thus, max pooling
layer also neglects the micro-variation of the facial images.

• Existing networks have large computational cost as they uses large number
of learning parameters.



LEARNet Architecture

Fig. 2. Proposed LEARNet architecture



Type Sub-layer Filter Stride Output #Parameters (w+b)

Input - - - 112x112x3 -

Conv- 1 - 3 3 2 56x56x16 432+16

Conv- 2

2.1

1 1 2 28x28x16 4 (256+16)
2.2

2.3

2.4

Add- 1
1.1

- - 28x28x16 -
1.2

Conv- 3

3.1

3 3 2 14x14x32 4 (4608+32)
3.1

3.3

3.4

Add- 2
2.1

- - 14x14x32 -
2.2

Conv- 4

4.1

5 5 2 7x7x64 4 (51200+64)
4.2

4.3

4.4

Concat - - - 7x7x256 -

LRN - - - 7x7x256 256+256

Conv- 5 - 3 3 2 4x4x256 589824+256

FC - - - 1x1x256 589824+256

TABLE VII

LEARNet Detailed Configuration

LEARNet Architecture



Properties of LearNet
➢ LEARNet model captures more detailed features by using the decoupled feature map

mechanism, which help in preserving the minute facial muscle change information.

➢ LearNet utilize the hybrid feature approach by incorporating an accretion layer to extend the network in
accretive way.

➢ Accretion layer combines the hybrid responses which are generated by previous layers. These
layers enhance the learnability of the neurons for minute details and maintain the essence of
the feature maps

➢ EXPERTNet included convolution layer with stride 2, which decrease the size of input with

minimum information loss.



Qualitative Analysis

Fig. 3. Response maps of two different emotion classes a) disgust and b) happy, captured at 1st level of the 

convolution layer.



Fig. 4. Visualization of neuron responses for disgust emotion triggered by: a) Conv- 2.1 b) Conv- 2.2 and c) 

accretion response.

Qualitative Analysis



Fig. 5. Visual comparison of existing model and LEARNEet over different expression of four datasets a) CASME-

I: Tension b) CASME-II:  Happy c) CAS(ME)^2: Anger and d) SMIC: surprise. 

Comparative Analysis



Quantitative Analysis

Method
CASME-

I

CASME-

II

CAS(ME)^

2

LBP-TOP-SVM* 64.07 57.16
-

LBP-TOP-ELM * 73.82 -
-

MDMO-SVM* 68.86 67.37
-

CNN-LSTN* - 60.98
-

VGG-16 36.59 44.29
44.29

VGG-19 36.59 44.29 44.28

ResNet 76.39 74.49 74.48

LEARNet 80.42 76.82 76.27

Method 5-Class 2-Class

LBP-TOP-SVM* 71.40 -

MDMO-SVM * 80.00 -

VGG-16 36.59 51.53

VGG-19 36.59 51.53

ResNet 71.36 88.27

LEARNet 82.66 91.09

TABLE VIII

RECOGNITION ACCURACY COMPARISON ON CASME-I, 

CASME-II AND CAS(ME)^2 DATASET

TABLE IX

Recognition Accuracy Comparison on SMIC 

Dataset

*Results are taken from the original papers



Computational Analysis

Network # Layers
# Parameters (in 

millions)

VGG-16 [12] 16 138

VGG- 19 [12] 19 144

GoogleNet [13] 22 4

ResNet [15] 34 11

LEARNet 14 1.4

TABLE X

Computational Complexity analysis of LEARNet and existing Networks



Conclusion

• We have generated dynamic images from micro expression
sequence which captures the facial movements in one frame.

• The proposed architecture adopts hybrid and decoupled feature
learning mechanism to learn the salient features from the
expressive regions captured in the past layers.

• LEARNet uses different sized filters i.e. 1x1, 3x3 and 5x5,
which enhance the capability of network by extracting micro
and high-level features.

• Proposed network includes the accretion layer to merge the
features of two response maps that allow to expose pertinent
features robustly.
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