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Shortfalls of Previous Methods

• LBP faced problem in noisy conditions .

• Directional descriptors like LDP, LDN, LDTP and LDTerP, extracted features of expressive regions by
applying different compass mask as sobel, krish and robinson. Therefore, the performance of
these methods fully dependent on selected predesigned compass masks.

• Most recent descriptor LDTerP mainly focuses on the extreme edge variations and ignores micro
level edge information. This may lead to salient feature loss, thereby degrading the discrimination
capability of the descriptor.
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Fig. 1. Overall Process of proposed method
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Fig. 2. Proposed Descriptor



Proposed descriptor Cont…
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The detailed step wise representation of the QUEST is given in Eq (1-4).
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is the reference pixel in the image.

is the total number of the neighborhood.
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Proposed descriptor Cont…
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Properties of QUEST

The properties of QUEST are summarized as follows:

1. QUEST encoded the gradient edge information by dividing neighboring pixels into two quadratics to

generate six-bit compact code. Thus, generates small feature vector.

2. QUEST extracted the gradient information by utilizing trine pixel relationship, that increases its

robustness to noise, pose and lighting changes.

3. Extracted gradient information cohesively describe the disparities among the expression classes.



Comparison between proposed and existing approaches

Fig. 3. Coded response results over a anger expression image of 

the MUG dataset.



Comparison between proposed and existing approaches

Fig. 4. Coded response results over three different expression 

(a) fear (b) surprise (c) sad images.



Methods 6-Class Exp. 7-Class Exp.

LBP [11] 76.5 81.7

Two-Phase [13] 75.4 82.0

LDP [15] 80.5 84.0

LDN [16] 80.5 83.0

LDTexP [17] 83.4 86.0

LDTerP [18] 80.6 80.0

Spatio-Temopral* [20] 81.2 -

QUEST 83.05 84.0

TABLE I

recognition accuracy comparison on MMI dataset

Methods 5-Class Exp. 6-Class Exp.

LBP [11] 92.2 87.8

Two-Phase [13] 88.6 85.0

LDP [15] 94.0 90.0

LDN [16] 93.4 91.0

LDTexP [17] 94.0 91.8

QUEST 94.3 91.33

Experimental Results

TABLE II

recognition accuracy comparison on GEMEP-FERA dataset



Method

6-Class Avg. Accuracy

Dark Strong Weak Avg.

LBP [11] 97.6 97.2 97.2 97.3

Two-Phase [13] 94.3 94.1 95.2 94.5

LDP [15] 96.6 97.5 97.9 97.3

LDN [16] 98.3 98.1 98.5 98.3

LDTexP [17] 98.1 98.0 98.2 98.1

LDTerP [18] 98.0 97.8 98.1 98.0

QUEST 98.6 98.2 98.2 98.3

Method

7-Class Avg. Accuracy

Dark Strong Weak Avg.

LBP [11] 96.4 96.9 95.9 96.4

Two-Phase [13] 93.0 92.3 91.3 92.2

LDP [15] 96.0 97.7 97.7 97.1

LDN [16] 96.7 98.1 98.0 97.6

LDTexP [17] 97.8 97.7 97.1 97.5

LDTerP [18] 97.7 96.6 98.2 98.0

QUEST 98.3 98.2 98.2 98.2

TABLE III

recognition accuracy comparison on OULU_VIS 6- class expression dataset

TABLE IV

recognition accuracy comparison on OULU_VIS 7- class expression dataset

Experimental Results



Method

6-Class Avg. Accuracy

Dark Strong Weak Avg.

LBP [11] 94.1 96.3 96.1 95.5

Two-Phase [13] 80.3 87.8 90.0 86.0

LDP [15] 92.7 98.4 97.2 96.1

LDN [16] 94.3 98.5 96.0 96.2

LDTexP [17] 90.3 98.5 96.6 95.1

LDTerP [18] 93.9 98.3 97.2 96.4

QUEST 94.5 98.5 97.9 96.9

Method

7- Class Avg. Accuracy

Dark Strong Weak Avg.

LBP [11] 90.1 93.3 94.1 92.5

Two-Phase [13] 86.2 87.0 89.4 87.5

LDP [15] 94.3 98.0 96.3 96.2

LDN [16] 95.3 97.8 96.7 96.6

LDTexP [17] 95.0 98.3 96.7 96.7

LDTerP [18] 92.4 98.8 96.8 96.0

QUEST 94.9 99.1 97.2 97.0

TABLE VI

recognition accuracy comparison on OULU_NIR 7- class expression dataset

TABLE V

recognition accuracy comparison on OULU_NIR 6- class expression dataset

Experimental Results



Fig. 5. Confusion matrix of QUEST for 5-class

expression classification in GEMEP_FERA dataset

Fig. 6. Confusion matrix of QUEST for 6-class

expression classification in GEMEP_FERA dataset

Experimental Results



Conclusion

• QUEST encoded two six-bit compact codes by thresholding neighboring pixels with reference pixel 
by dividing the local neighborhood into two quadrics.

• QUEST Extracts the transitional patterns by analyzing pixels located in quadrilaterals, that’s 
elicited edge variation patterns.

• Quadrilateral structure extracted features of expressive regions and suppress the noise to 
increase the robustness of the QUEST.



Results on Real time video
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