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3DCD: A Scene Independent End-to-End
Spatiotemporal Feature Learning Framework for

Change Detection in Unseen Videos
Murari Mandal, Vansh Dhar, Abhishek Mishra, Santosh Kumar Vipparthi, Mohamed Abdel-Mottaleb

Abstract—Change detection is an elementary task in computer
vision and video processing applications. Recently, a number
of supervised methods based on convolutional neural networks
have reported high performance over the benchmark dataset.
However, their success depends upon the availability of certain
proportions of annotated frames from test video during training.
Thus, their performance on completely unseen videos or scene in-
dependent setup is undocumented in the literature. In this work,
we present a scene independent evaluation (SIE) framework to
test the supervised methods in completely unseen videos to obtain
generalized models for change detection. In addition, a scene
dependent evaluation (SDE) is also performed to document the
comparative analysis with the existing approaches. We propose
a fast (speed-25 fps) and lightweight (0.13 million parameters,
model size-1.16 MB) end-to-end 3D-CNN based change detection
network (3DCD) with multiple spatiotemporal learning blocks.
The proposed 3DCD consists of a gradual reductionist block for
background estimation from past temporal history. It also enables
motion saliency estimation, multi-schematic feature encoding-
decoding, and finally foreground segmentation through several
modular blocks. The proposed 3DCD outperforms the existing
state-of-the-art approaches evaluated in both SIE and SDE setup
over the benchmark CDnet 2014, LASIESTA and SBMI2015
datasets. To the best of our knowledge, this is a first attempt
to present results in clearly defined SDE and SIE setups in three
change detection datasets.

Index Terms—Change detection, background subtraction, 3D-
CNN, spatiotemporal, scene independence, deep learning

I. INTRODUCTION

Change detection in the video has numerous applications
in traffic monitoring, video synopsis, human-machine in-

teraction, behavior analysis, action recognition, visual surveil-
lance, anomaly detection, and object tracking. The objective
of a change detection technique is to segment a video frame
into the foreground and background regions corresponding to
object motion. Since it is often used as the first pre-processing
step, the output accuracy has an overwhelming effect on the
overall performance of the subsequent tasks. Therefore, it
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is critical to produce an accurate motion segmentation map.
However, various difficult scenarios such as fluctuation in
background regions, illumination variation, shadow, variable
frame rate in different cameras, weather changes, intermittent
object motion, camera jitter, and variable object motion, make
change detection a very challenging task.

Traditional approaches for change detection have designed
background subtraction methods to model the background
behavior and identify the foreground regions using various
thresholding techniques. Usually, these methods are unsuper-
vised in nature and can be grouped into parametric and non-
parametric approaches. The parametric statistical models [1]–
[3] have been widely adopted for background subtraction in
the past two decades. Whereas, more recent research in this do-
main is inspired by non-parametric modeling approaches [4]–
[10].

Recent advances in supervised learning [11]–[14] ap-
proaches have led to the development of various deep learning-
based techniques to solve the change detection problem.
Many attempts in this domain leverage off-the-shelf pre-
trained convolutional neural networks (CNNs) and integrate
them with hand-crafted background modeling techniques for
temporal feature encoding [15]–[18]. Some methods [18]–[21]
divide the video frames into patches for training. Others have
modeled the pixel-wise change by presenting different varia-
tions of CNN [22]–[25] and generative adversarial networks
(GAN) [26], [27] based architectures.

The supervised deep learning methods have apparently
outperformed the unsupervised algorithms in the literature.
However, most of these models [15]–[25] have been optimized
either for one specific video or a group of similar videos.
We denote such an evaluation scheme as scene dependent
evaluation (SDE). In SDE, some frames from the test videos
are used for training the model. This has led to bloated
results over the benchmark datasets. The performance of these
methods has not been evaluated on unseen videos.

In order to assess the robustness of the designed models for
real-world scenarios, it is imperative to evaluate the models
with videos that were not used in training. Therefore, in this
paper, we introduce a scene independent evaluation (SIE)
scheme to avoid any bias in the evaluation. In SIE, the
training and testing sets are composed of frames originating
from different videos. This ensures that no labeled ground-
truth from test videos has been exposed to the network in
the training phase. Thus, the performance is expected to be
compared only based upon unseen test videos.
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Fig. 1: The proposed 3DCD framework for change detection. GRBE: gradual reduction background estimation, FSR: foreground saliency reinforcement,
MScE: multi-schematic encoder, RC: residual connector, MScD: multi-schematic decoder, CFD: compact foreground detection

In this work, we propose a fast and lightweight end-to-end
spatiotemporal feature learning framework (3DCD) for change
detection in unseen videos. The proposed framework enables
background estimation, motion saliency estimation, multi-
schematic feature encoding, decoding, and finally foreground
segmentation through an end-to-end 3D-CNN network. The
proposed 3DCD is demonstrated through a block diagram
in Fig. 1. To summarize, this paper makes the following
contributions:

1) We present a completely end-to-end spatiotemporal net-
work 3DCD consisting of blocks for background esti-
mation, motion saliency representation, and finally fore-
ground segmentation map. Our online model is very fast
(speed-25 fps) and lightweight (0.13 million parameters,
model size-1.16 MB), making it suitable for real-time
applications.

2) We designed multi-schematic architectures for features
encoding and decoding with residual connectors to learn
structurally diverse motion saliency features at multiple
scales.

3) We present a scene independent evaluation (SIE) scheme
to train and evaluate the proposed 3DCD in unseen
videos in three benchmark datasets CDnet2014, LASI-
ESTA, and SBMI2015. Evaluation over completely un-
seen videos in the SIE setup ensures fair evaluation
of the generalization capability of the designed net-
work. Moreover, for comparative analysis with existing
approaches, scene dependent evaluation (SDE) is also
conducted for CDnet2014, LASIESTA, and SBMI2015.

4) The proposed 3DCD outperforms (overall, in terms of
accuracy, speed, memory, and compute efficiency) the
existing state-of-the-art methods. The ablation studies
and visualization of the proposed network are also
discussed in the experimental section.

II. RELATED WORK

An extensive body of literature is available on change
detection. We group and discuss these techniques in two cat-
egories: unsupervised methods and supervised deep learning-
based methods.

A. Unsupervised Methods

The unsupervised methods for change detection are usually
comprised of two crucial tasks: extraction of pertinent features

Fig. 2: Difference between the scene dependent and scene independent data
division schemes. In the scene dependent setup, training, and testing frames
are collected from the same video. Whereas, in the scene independent setup,
only unseen videos are used for evaluation

from image sequences and background modeling. For feature
extraction, low-level image features, i.e., grayscale, color
intensity, and edge magnitudes [28], [29] are commonly used.
Moreover, specific spatial and spatiotemporal local feature
descriptors have also been designed for enhanced perfor-
mance [8], [9], [30]. A local descriptor extracts the feature
representation in a region or local neighborhood of an image.
The background modelling techniques can be categorized
into parametric and non-parametric methods. Stauffer and
Grimson [2] developed a parametric approach using Gaussian
Mixture Models (GMM). In GMM, the statistical distribution
at each location is modeled and updated through a mixture
of Gaussian distributions and Expectation Maximization (EM)
algorithm respectively. Based on this architecture, several
mechanisms were presented by designing adaptive GMM with
variable parameter selection and spatial mixture of Gaus-
sians [1], [3]. Most of the modern non-parametric methods are
inspired by the consensus-based method [31] and ViBe [32].
In [31], a collection of background samples is stored at
each pixel and is updated through a first-in-first-out policy.
However, such an update policy doesn’t necessarily reflect the
background behavior in real-life video sequences. Therefore,
to alleviate some of these issues, three significant background
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model maintenance policies were proposed in [32]: random
sample, memoryless update policy, and spatial diffusion via
background sample propagation. These strategies have been
widely adopted by the recent state-of-the-art methods [4], [8],
[9]. The foreground detection and background model update
in ViBe were performed using a manually defined threshold
and static update rate. To adaptively update the decision
thresholds, learning rate for foreground segmentation, and
background model maintenance respectively, a Pixel-Based
Adaptive Segmenter (PBAS) was proposed in [10]. Moreover,
St-Charles et al. [9], [30] designed a spatiotemporal feature
descriptor to simultaneously map the low-level (color inten-
sities) as well as the local neighborhood features for robust
background subtraction. They also incorporated an adaptive
feedback mechanism to continuously monitor the background
model fidelity and segmentation entropy to update the decision
thresholds, learning rates and background samples. Further-
more, a deterministic background model update policy was
proposed by Mandal et al. [29]. Bianco et al. [33] conducted
multiple experiments to combine various background subtrac-
tion techniques through genetic programming for improved
performance.

The traditional unsupervised methods naturally follow the
SIE setup because they do not require any ground truth labels
prior to the evaluation stage. This ensures fair evaluation
through documentation of results in the same experimental
setup. Moreover, the robustness of the algorithm is estimated
in unseen videos for all the methods.

B. Supervised Deep Learning Methods

Many researchers have designed CNN models to segment
video frames into foreground and background regions. Babaee
et al. [20] generated the background image using proven
hand-crafted approaches like SubSENSE [9] and Flux Ten-
sor [34]. This background image and the current frame are
partitioned into small patches and concatenated together to
form the input layer. The motion features are learned by
feeding this input to a CNN network. The final response is
generated by augmenting these segmentation maps. Similarly,
Nguyen et al. [19] designed a triplet CNN network to extract
the relevant features for change detection. Furthermore, the
feature learning capability of off-the-shelf CNN models such
as VGG16 has also been successfully adapted for change
detection in [15], [17], [18]. Lim et al. [16] developed a
background model update policy along with the encoder-
decoder network for adaptive background subtraction. The
LSTM networks [35], [36] have been successfully used in
the literature to model the temporal variations. Similarly, the
attention-based mechanism [37] has been designed for multi-
modal feature fusion. Chen et al. [38] proposed an attention
ConvLSTM network to model pixel-wise changes over time.
Moreover, authors in [23] temporally encoded the motion in-
formation by sampling multiple images from previous frames
with increasing intervals. Patil and Murala [25] designed a
compact end-to-end CNN and Akilan et al. [24] proposed a
3D-CNN LSTM based network to model pixel-wise changes
over time. Several methods [39], [40] extract the multi-scale

convolutional features to learn robust spatial context from the
images. This approach has been used in the development of
several other moving object detection algorithms as well [41],
[42]. In addition, Generative Adversarial Network (cGAN)
based models [26], [27] have also been designed to learn
motion features for change detection.

Since, the benchmark change detection datasets do not de-
fine the train-test division. Thus, researchers have used various
data division strategies for network training and evaluation. We
categorize the evaluation strategies into scene independent and
scene dependent setups. In SDE both train and test set contain
frames from the same video whereas, only unseen videos are
used for evaluation in SIE setup. In Fig. 2, we depict the
difference between SDE and SIE setup.

III. PROPOSED END-TO-END 3DCD

We give a detailed description of the proposed end-to-
end 3D-CNN based change detection (3DCD) framework
through its constituent blocks. The feature map visualizations
for each of these blocks are qualitatively analyzed for an
intuitive understanding of the proposed network. Furthermore,
we discuss some insights on the strengths of the proposed
3DCD over the existing methods.

A. Gradual Reduction Background Estimation (GRBE)

The proposed 3DCD uses the spatiotemporal signals from
past history to estimate the background. In addition, the current
frame is also fed into the network as a reference for motion
estimation. In GRBE block, we estimate the background from
recent history frames (M = 50) through a sequence of 3D
convolutions and spatiotemporal average pooling layers. The
motion characteristics in a video may vary for different sce-
narios such as slow motion, fast motion, intermittent motion,
camera jitter, and dynamic background. These intrinsic chal-
lenges should be taken into account while designing a change
detection algorithm. To address these challenges, different
granularity of temporal depths (past history frames) can be
used to describe different types of object motions. Moreover,
the temporal mean value has been frequently used in the
literature [29] to estimate the static regions. Motivated by the
above considerations, we exploit the spatiotemporal features
computed at multiple levels of temporal depths. By multi-
level, we mean that the temporal features are decomposed
into a single feature map by applying 3D convolutions at
different granular depths. The final feature map estimates the
background for subsequent processing.

To estimate the background, we apply 3D average pooling
with stride 5, 2, and 5 to achieve granular spatiotemporal
features with depths 10, 5, and 1, respectively. At each level
of granularity, we apply 3D convolution to robustly encode the
spatiotemporal patterns. The complete GRBE block estimates
the background through feature learning in both the spatial
and temporal domains by progressive elimination of temporal
movements at multiple levels of granularity. The GRBE block
architecture is depicted in Fig. 3. From M historical frames,
the GRBE block generates a single depth feature map for
background representation. Let’s denote the input tensor as
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Fig. 3: Illustration of the GRBE block. It takes past temporal history as input and estimates the background (EB) through progressive reduction of the
spatiotemporal features at multiple granularities. ap3d: 3d average pooling, conv3d: 3D convolution.

Fig. 4: The FSR block. The coarse motion features are estimated in CMF
which are further refined through the FSR. CMF: coarse motion features,
FSR: foreground saliency reinforcement.

VM . We first compute the granular features GRM at depths
10 and 5 using Eq. 1.

GRM = Sl (VM )|2l=1 (1)

The Sl(·) is computed using Eq. 2 and Eq. 3.

Sl (VM ) = R
(
aph,w,dl

(
κ2l+2,h,w,d ⊗ Sl+1 (VM )

))
(2)

S3 (VM ) = R
(
aph,w,d3

(
κ25,h,w,d ⊗ VM

))
(3)

where ⊗ denote 3D convolution operation and κx,h,w,d is con-
volutional kernel with parameters x, h, w, and d representing
the number of kernels, height, width, and depth of the kernels,
respectively. In GRBE block, we use h = w = d = 3 and
stride = 1. The aph,w,dl

represents 3D average pooling with
parameters d1 = 5(stride = 5), d2 = 2(stride = 2), and
d3 = 5(stride = 5), respectively. R denotes the rectified
linear unit (ReLu) activation function. It can be observed from
Eq. 1 - Eq. 3 and Fig. 3 that the average pooling is applied
spatiotemporally at multiple temporal depths which enables
GRBE block to estimate background with contributions
from different granularities. Finally, the estimated background
EBM is computed using Eq. 4.

EBM = < (κ1,h,w,1 ⊗GRM ) (4)

B. Foreground Saliency Reinforcement (FSR)

After extracting the background EBM from the input tensor
VM , the coarse motion features (CMF ) are identified using a
subtraction layer. The CMF for current frame I is computed
using Eq. 5.

CMF = I − EBM (5)

Simply applying the CMF may lead to certain semantic shape
distortions resulting in inadequate learning of foreground fea-
tures. Thus, we introduce a saliency reinforcement to restore
foreground semantics by assimilating features from the current
frame with CMF in the foreground saliency reinforcement
(FSR) block. The detailed architecture of the FSR block is
depicted in Fig. 4. The FSR response is computed through
Eq. 6.

FSR = < ([κ8,h,w,1 ⊗ CMF, κ8,h,w,1 ⊗ I]) (6)

The kernels in FSR block and all the subsequent blocks
of 3DCD are designed to learn refined spatial features from
the estimated background for semantically aware foreground
detection.

C. MScE and MScD with Residual Connectors

The FSR block response maps are further processed
through multi-schematic encoder, residual connectors, and
multi-schematic decoder to estimate a more accurate pixel-
level segmentation map. Multi-scale feature representations
have been successfully used in semantic segmentation appli-
cations to achieve robust performance [11], [43]–[45]. Most
of the existing approaches have extracted multi-scale features
in the encoder section, whereas, the decoder section usually
consists of simple up sampling operations [46], fully con-
nected layers [11], [45], shortcut connections [47], or feature
fusion with encoder features [12]. However, in this paper, we
designed both multi-schematic encoder (MScE) and multi-
schematic decoder (MScD) architectures to learn structurally
diverse features at multiple scales for robust change detection.

1) Multi-schematic Encoder: Here, the FSR map is repre-
sented through schemas at three different scales. These three
schemas denoted as MScE1, MScE2, MScE3, are computed
using Eq. 7-Eq. 9.

MScE1 = < (mp2,2,1 (κ16,h,w,1 ⊗mp2,2,1(FSR))) (7)

MScE2 = < (κ16,h,w,1 ⊗mp4,4,1(FSR)) (8)

MScE3 = <(mp2,2,1(κ16,h,w,1⊗
<(mp2,2,1(κ16,h,w,1 ⊗ FSR))))

(9)

where mph,w,d represents 3D max pooling. The three schemas
MScE1, MScE2, MScE3, extract discernible features at
three different scales. In MScE1 and MScE2, we first apply
max pooling by a factor of 2 and 4, respectively over FSR.
Subsequently, salient features are learned from these two
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Fig. 5: Illustration of the MScE, RC, MScD, and CFD blocks. The FSR responses are encoded through three schematic streams MScE1, MScE2 and MScE3
in MScE block. Thereafter, the residual connectors (RC) are used to refine MScE features. Furthermore, the refined abstract features are decoded through
three schematic streams MScD1, MScD2, and MScD3 in MScD block. The assimilated features are fed to CFD block to generate the final segmentation map.
conv3d: 3D convolution, conv3dT: 3D transpose convolution, up3d: 3D up sampling, mp3d: 3D max pooling.

different levels of spatial granularity. In addition, MScE3 en-
codes convolutional features from the original FSR. Finally,
the response of the MScE block is computed by combining
the multi-schematic features from the three streams using Eq.
10.

MScE = [MScE1,MScE2,MScE3] (10)

The detailed MScE architecture is shown in Fig. 5.
2) Residual Connectors: In order to fortify the high-level

foreground semantics, multiple residual connectors are used
to refine the MScE features. The RC features, as shown in
Fig. 5, is computed using Eq. 11 and Eq. 12.

RC = < ((κ48,h,w,1 ⊗RC1) +RC1) (11)

RC1 = < ((κ48,h,w,1 ⊗MScE) +MScE) (12)

3) Multi-schematic Decoder: Similar to the multi-
schematic encoder, we design the multi-schematic decoder
in order to reproduce the original frame shaped features
for pixel-level change detection. As shown in Fig. 5, we
used three different schemas MScD1, MScD2, MScD3,
to capture the context information from different streams of
saliency estimation. In MScD1 and MScD2, we first up
sample the high-level encoder features by the factor of 2 and
4, respectively. Furthermore, we reconstruct the pixel-level
features by learning salient patterns through convolution, max
pool and up-sample layers. In MScD3, we use the up-sample
layers at altered position as compared to MScD1. This
approach of using up-sampling and convolution at alternative
positions can capture saliency by extracting differentiable
features from encoded maps of same resolutions at different
schemas. Three multi-stream up-sampled features of MScD:
MScD1, MScD2, and MScD3 are computed using Eq. 13
- Eq. 15.

MScD1 = < (up2,2,1 (CB16 (CB32 (up2,2,1(RC))))) (13)

MScD2 = CB16 (CB32 (up4,4,1(RC))) (14)

MScD3 = CB16 (up2,2,1 (CB32 (up2,2,1(RC)))) (15)

The CBj(·) is computed using Eq. 16.

CBj(x) = <
(
mph,w,1

(
κTj,h,w,1 ⊗ x

))
(16)

where uph,w,1, κTh,w,1 denote 3D upsample, transposed con-
volutional kernel, respectively. The resultant multi-schematic
features are assimilated using Eq. 17.

MScD = [MScD1,MScD2,MScD3] (17)

As the objects in a video are captured with different angle
of view, have different scales, and aspect ratios. The multi-
schematic features encoded and decoded in the MScE and
MScD blocks would give more clues for foreground recon-
struction for such scenarios.

D. Compact Foreground Detection

The final motion segmentation is performed by gradual
feature depth reduction with the CFD block as given in Eq.
18 and Eq. 19.

CFD = δ (κ1,h,w,1 ⊗ CF8 (CF16(MScD))) (18)

CFj(x) = < (κj,h,w,1 ⊗ x)) (19)

where δ(·) denotes the sigmoid function. The final foreground
segmentation map is represented through a binary image as
shown in Fig. 5.

E. Strengths and Analysis of the Proposed 3DCD

One of the major advantages of the proposed 3DCD frame-
work over the existing deep learning methods for change
detection is the intuitive spatiotemporal model design. The
3DCD takes the previous 50 frames as input to estimate the
background. Whereas, most of the existing methods solve the
problem as a single image segmentation problem by carefully
selecting the training frames. For example, FgSegNet [15] and
MSFS [49] models do not use any temporal data and rather
depend on the data selection strategy to optimize the results.
Such models overfit the dataset and do not necessarily learn
the underlying task of change detection. Our analysis is clearly
supported by the significantly better performance of 3DCD
over FgSegNet and MSFS in SIE setup as presented in Table
III, Table V and Table VII.

The proposed 3DCD model is highly lightweight in nature.
The existing methods [15], [24], [38], [49] have stacked a
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Fig. 6: Visualization of different blocks of proposed 3DCD

TABLE I
COMPARATIVE ANALYSIS OF PROPOSED 3DCD WITH EXISTING

METHODS AND EVALUATION SCHEMES

Method BE MS Training data SIEselection
Babaee et al. SuBSENSE N Random 5% N[20] (video-wise)
Nguyen et al. SuBSENSE N Random 100 frames N[19] (video-wise)

Lin et al. SuBSENSE N LOVO Y[18]
Lim et al. Designed background N LOVO N[16] model

Brahman et al. IUTIS-5 N 50% N[21] (video-wise)
Wang et al. Frame-level N Selective 50/200 frames N[48] segmentation (video-wise)

Lim & Keles Frame-level Y Selective 50/200 frames N[15] segmentation (video-wise)
Zeng et al. Frame-level Y Random 150 frames N[17] segmentation (video-wise)
Chen et al. 2D-CNN N 50% N[38] (video-wise)
Yang et al. 2D-CNN N 90% N[23] (video-wise)

Bakkay et al. Generator N 50% N[26] (2D-CNN) (video-wise)
Akilan et al. 3D-CNN N 70% N[24] (video-wise)
Patil et al. 2D-CNN N Random N[25] (video-wise)
Proposed End-to-end Y LOVO Y3DCD 3D-CNN

BE: Background estimation, MS: Multi-scale feature learning, SIE: Scene
independent evaluation

variety of pre-trained models (VGG16, GoogleNet, ResNet50,
DeepLabv3), expensive operations such as conditional random
fields (CRF), semantic segmentation, etc. to obtain the results.
These results come at the cost of increased space and computa-
tional complexity. Our work outperforms (overall, in terms of
accuracy, speed, memory, and compute efficiency) the existing
state-of-the-art methods. It makes 3DCD a highly suitable
candidate for real-time applications. In addition to the network
design strengths, our model is the first extensively validated
model in scene independent setup across 3 different datasets.
Furthermore, comparative analysis with existing methods in
the same setup makes our work a valuable contribution to
change detection research.

F. Visualization

In order to illustrate the intermediate responses of the
constituent blocks of the 3DCD network, we also compute the
feature map visualizations at GRBE, CMF , FSR, CFD,
and depict the same in Fig. 6. Here, we can see that the
background features are estimated quite robustly through the
GRBE block. After subtracting the estimated background
with the current frame, we get a fair representation of the
motion features in the CMF block. Furthermore, the refined
foreground representation is achieved through the the FSR
and CFD features. Thus, the proposed 3DCD can also be
used as a modular framework to design and develop custom
blocks for improved change detection performance.

IV. EXPERIMENTAL SETTING, RESULTS, AND
DISCUSSIONS

A. Problem with Scene Dependency

In scene dependent evaluation (SDE) setup, some frames
from test videos are also used in training which is not an
ideal setup for deep learning model evaluation. In order to
actualize a generalized model, it is essential to evaluate the
trained model over unseen videos. This also makes the process
of model design much more challenging and ensures better
performance in real-world scenarios. Therefore, the proposed
SIE setup to evaluate the designed deep networks on com-
pletely unseen data is a better evaluation strategy as compared
to the SDE setup. More recent benchmark datasets for other
video-based applications [50], [51] already ensure such scene
independency in their evaluation schemes. Based on all these
observations, our proposition is to give more importance to
SIE over SDE for change detection model evaluation.

B. Comparison with the Existing Evaluation Schemes

We compare the proposed method and evaluation scheme
with existing approaches in terms of background estima-
tion (BE), multi-scale feature learning (MS), training data
selection, and scene independent evaluation (SIE) in Table
I. In terms of evaluation schemes, most of the existing
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methods [15]–[21], [23]–[26], [38], [48] have adopted SDE
scheme in which some frames from test videos are also used
in training. These SDE setups follow a variety of training
data selection strategies. For example, selection of training
frames through temporal division with different proportions
such as 50%, 70%, 90%, 5%, 50/100/150/200 of frames, etc.
Even though the authors in [18] have attempted to conduct
scene independent experiments, they only used six categories
in their experiments with quite low performance (68.74 F-
score overall). Whereas, we propose a clearly defined SIE
setup and used over 10 categories (49 videos) to ensure
robust performance analysis of CNN models in unseen videos.
Furthermore, in order to give a comparative analysis with
reference to the existing methods, we also present a clearly
defined SDE setup.

In terms of BE, the methods in [16], [18]–[21] are dependent
either on statistical or non-parametric handcrafted methods to
extract the temporal features. Whereas, the authors in [15],
[17], [48] have just performed frame-level segmentation with-
out considering the historical context. In [23]–[26], [38], the
background features are estimated with CNN network. In
the proposed 3DCD, we designed a GRBE block to model
temporal features from the recent history for effective BE in
an end-to-end manner.

To the best of our knowledge, multi-scale features with
spatiotemporal 3D-CNN layers have not been explored in
the literature for change detection. The few methods [15],
[17] to use multi-scale features have performed frame-wise
segmentation in 2D-CNN without including any temporal
context. However, in this paper we have exploited multi-
schematic features through the MScE and MScD blocks to
more robustly detect moving objects in videos having different
scales, angles of view, and aspect ratios.

C. Experiment Settings and Dataset
1) Implementation Details: The entire network is imple-

mented in Keras with Tensorflow backend. The 3DCD takes
two tensors as input of shape 50 × 256 × 256 × 1 (temporal
history) and 1 × 256 × 256 × 1 (current frame). We use
M = 50 historical frames to model the background which
can be changed according to the application requirement.

2) Training configuration: Training is done with batch
size=1 over Nvidia Titan Xp GPU. We use stochastic gradient
descent optimizer with binary cross-entropy loss function to
train the network. The final loss is backpropagation to all
the blocks of the network including GRBE for background
estimation. The initial learning rate is set to 0.0006 which
is further decreased by 0.0002 after every 20 epochs. The
minimum learning rate is set to 0.0001.

3) Datasets: The benchmark CDnet 2014 [68], LASIESTA
[69], and SBMI2015 [70] datasets are used for performance
evaluation. The CDnet 2014 consists of 53 videos from a
diverse set of realistic scenarios grouped into 11 different
categories. Approximately 89,000 ground truth frames are
available for training and evaluation. In our experiments, we
exclude the PTZ category due to excessive camera motion. We
used 88,882 frames for training and evaluation. The LASI-
ESTA [69] consist of two different types of videos captured

TABLE II
PERFORMANCE OF THE PROPOSED 3DCD IN SIE FRAMEWORK ON

CDNET 2014 DATASET

Category Scene Prec Rec F-Score PWC
BW blizzard 0.94 0.95 0.94 0.12
BL pedestrian 0.93 0.94 0.93 0.11
CJ sidewalk 0.95 0.74 0.83 0.63
DB boats 0.95 0.83 0.88 0.12

IOM parking 0.86 0.81 0.84 2.26
LF turnpike05fps 0.95 0.89 0.92 1.09
NV tramStation 0.79 0.72 0.75 1.17
SD busStation 0.73 0.84 0.79 1.58
TH corridor 0.98 0.87 0.92 0.45
TB turbulence1 0.91 0.74 0.82 0.09

Average 0.90 0.83 0.86 0.76

BW: bad weather, BL: baseline, CJ: camera jitter, DB: dynamic background,
IOM: intermittent object motion, LF: low framerate, NV: night videos, SD:
shadow, TH: thermal, TB: turbulence. Prec: Precision, Rec: Recall, PWC:

Percentage of Wrong Classification

in indoor and outdoor scenarios. The videos are character-
ized with different motion type and intensity. There are 12
indoor and 8 outdoor videos. About 8,575 labeled frames are
available for analysis. Similarly, SBMI2015 [70] dataset has
13 challenging videos. Approximately, 5,023 annotated frames
are available for performance evaluation.

D. Quantitative Results

We conduct multiple experiments to evaluate the perfor-
mance of the proposed 3DCD in both SIE and SDE setup.
The performance is measured in terms of precision, recall,
F-score, and percentage of wrong classification (PWC). We
also perform a comparative analysis of the proposed and
existing state-of-the-art deep learning and non-deep learning
methods. The comparison is done based on F-score which is a
comprehensive indicator of performance for change detection.

1) The problem of noncomparability in deep learning meth-
ods: We identified two glaring problems with the experimental
setups of existing deep learning approaches for change detec-
tion. The problem of scene dependence is already discussed
in the earlier Sections. Another issue is documentation of
incomparable results even in the SDE setup. Different authors
have adopted different ways to segregate training and testing
data. In fact, the highest F-score is claimed [20], [48] by
manually selecting a particular set of frames from a single
video to train the model and then test over the same video.
These video-optimized results are not directly comparable with
other methods. Similarly, other methods used different data-
division schemes which makes the claimed results incompara-
ble. Therefore, we compute results with a clearly defined SDE
setup and present baseline results for the same as well.

2) Quantitative results in the SIE setup: We conduct exper-
iments on CDnet 2014, LASIESTA and SBMI2015 in the SIE
setup. We also train and evaluate the existing deep learning
methods FgSegNet-S, FgSegNet-M, and MSFS in the same
SIE setup to present an empirical comparative analysis. All
the results are presented in Table II-Table VIII.

CDnet 2014: The training and testing videos are separated
using a leave-one-video-out (LOVO) strategy, i.e., one video
from each category is used in evaluation and the rest are
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TABLE III
COMPARATIVE F-SCORE PERFORMANCE IN SIE FRAMEWORK ON CDNET 2014 DATASET

Method SIE BL PE SW BO PA TP TS BS CO T1 Avg

SuBSENSE [9] Yes 0.85 0.95 0.81 0.69 0.48 0.85 0.86 0.86 0.91 0.79 0.81
VIBE [32] Yes 0.53 0.90 0.30 0.22 0.26 0.60 0.67 0.67 0.75 0.58 0.55

PAWCS [52] Yes 0.66 0.95 0.74 0.88 0.21 0.91 0.86 0.86 0.65 0.68 0.74
IUTIS-5 [33] Yes 0.80 0.97 0.81 0.75 0.65 0.89 0.87 0.87 0.90 0.63 0.81
UBSS [28] Yes 0.86 0.96 0.90 0.90 0.62 0.89 0.87 0.87 0.92 0.54 0.83

WeSamBe [4] Yes 0.86 0.96 0.85 0.64 0.41 0.91 0.86 0.86 0.89 0.71 0.80
SemBGS [53] Yes 0.84 0.98 0.85 0.98 0.69 0.88 0.92 0.92 0.82 0.30 0.82

BSUV-Net [54] Yes 0.82 0.97 0.69 0.89 0.91 0.91 0.80 0.94 0.83 0.66 0.84
BSUV-Net+SemBGS [54] Yes 0.82 0.97 0.71 0.91 0.91 0.91 0.80 0.96 0.82 0.65 0.85

BMN-BSN [55] Yes 0.84 0.96 0.63 0.95 0.77 0.72 0.82 0.92 0.90 0.56 0.81
FgSegNet-S [15] Yes 0.74 0.65 0.12 0.42 0.17 0.57 0.41 0.52 0.74 0.17 0.45
FgSegNet-M [15] Yes 0.55 0.72 0.11 0.69 0.05 0.22 0.39 0.60 0.31 0.16 0.38

MSFS [49] Yes 0.70 0.33 0.22 0.62 0.52 0.74 0.43 0.53 0.77 0.12 0.50
3DCD Yes 0.94 0.93 0.83 0.88 0.84 0.92 0.75 0.79 0.92 0.82 0.86

BL: Blizzard (from Bad Weather), PE: Pedestrian (from Baseline), SW: Sidewalk (from Camera Jitter), PA: Parking(from Intermittent Object Motion), TP:
Turnpike05fps (from Low Frame Rate), TS: Tram Station (from Night Videos), BS: BusStation (from Shadow), CO: Corridor (from Thermal), T1:

Turbulence1 (from Turbulence)

TABLE IV
COMPARATIVE F-SCORE PERFORMANCE IN SDE FRAMEWORK ON CDNET 2014 DATASET

Method Train Data Test data BW BA CJ DB IOM NV LFR SD TH TB Avg

PAWCS [52] 0 100% 0.81 0.94 0.81 0.89 0.78 0.42 0.64 0.89 0.83 0.77 0.78
UBSS [28] 0 100% 0.79 0.89 0.87 0.78 0.76 0.53 0.62 0.78 0.79 0.47 0.73

WeSamBE [4] 0 100% 0.85 0.94 0.8 0.74 0.74 0.53 0.69 0.90 0.80 0.83 0.78
ViBe [32] 0 100% 0.77 0.88 0.45 0.72 0.47 0.40 0.33 0.83 0.55 0.61 0.60

SemBGS [53] 0 100% 0.83 0.96 0.84 0.95 0.79 0.50 0.79 0.95 0.82 0.69 0.81
IUTIS-5 [33] 0 100% 0.83 0.96 0.83 0.89 0.73 0.51 0.79 0.91 0.83 0.85 0.81

SuBSENSE [9] 0 100% 0.86 0.95 0.77 0.79 0.63 0.50 0.64 0.90 0.71 0.89 0.77
DeepBS [20] RS 100% 0.86 0.96 0.9 0.88 0.61 0.64 0.59 0.93 0.76 0.90 0.80

MSFgNet [25] RS 100% 0.85 0.92 0.83 0.85 0.78 0.81 0.84 0.93 0.80 0.86 0.85
SFEN(VGG) [56] 50% 100% 0.85 0.92 0.91 0.60 0.58 0.51 0.59 0.89 0.72 0.73 0.73
VGG+CRF [56] 50% 100% 0.88 0.94 0.93 0.62 0.61 0.52 0.61 0.90 0.73 0.74 0.75

VGG+PSL+CRF [56] 50% 100% 0.89 0.96 0.94 0.74 0.75 0.75 0.62 0.91 0.85 0.92 0.83
GoogLeNet+PSL+CRF [56] 50% 100% 0.8 0.86 0.89 0.66 0.65 0.60 0.59 0.80 0.77 0.76 0.74

Cascade-CNN [48] S50 100% 0.79 0.97 0.97 0.95 0.87 0.87 0.74 0.95 0.89 0.84 0.88
EDS-CNN [16] LOVO 100% 0.87 0.96 0.89 0.91 0.88 0.77 0.93 0.85 0.80 0.76 0.86

MCSCNNv1 [57] S5 100% 0.88 0.94 0.68 0.81 0.77 0.77 0.65 0.89 0.88 0.80 0.81
MCSCNNv2 [57] S5 100% 0.86 0.92 0.73 0.86 0.76 0.76 0.70 0.91 0.86 0.87 0.82
MCSCNNv3 [57] S5 100% 0.85 0.93 0.62 0.73 0.76 0.68 0.64 0.89 0.87 0.74 0.77
MCSCNNv4 [57] S5 100% 0.86 0.94 0.79 0.88 0.77 0.79 0.73 0.92 0.88 0.88 0.84

DPDL1 [58] S1 100% 0.60 0.79 0.55 0.66 0.51 0.40 0.60 0.69 0.67 0.63 0.61
DPDL20 [58] S20 100% 0.81 0.96 0.86 0.84 0.82 0.59 0.66 0.87 0.83 0.72 0.80
DPDL40 [58] S40 100% 0.87 0.97 0.87 0.87 0.87 0.61 0.71 0.94 0.84 0.76 0.83
MSRNN [59] NA 100% 0.89 0.96 0.92 0.91 0.87 0.56 0.84 0.95 0.85 0.80 0.85

LTDP [60] 0 100% 0.67 0.95 0.81 0.82 0.73 0.54 0.76 0.90 0.79 0.89 0.79
SBSNv1 [61] NA 100% 0.72 0.97 0.61 0.82 NA 0.38 NA 0.56 0.66 0.58 -
SBSNv2 [61] NA 100% 0.45 0.01 0.55 0.1 NA 0.25 NA 0.28 0.27 0.23 -
SBSNv3 [61] NA 100% 0.74 0.98 0.42 0.61 NA 0.39 NA 0.64 0.65 0.53 -
SBSNv4 [61] NA 100% 0.92 0.95 0.89 0.79 NA 0.77 NA 0.86 0.86 0.73 -
REDNv1 [62] S200 100% 0.78 0.97 0.93 0.86 0.80 0.79 0.73 0.88 0.84 0.88 0.85
REDNv2 [62] S100 100% 0.67 0.91 0.86 0.55 0.70 0.62 0.64 0.76 0.77 0.46 0.69
REDNv3 [62] S100 100% 0.65 0.91 0.83 0.51 0.73 0.71 0.63 0.76 0.77 0.46 0.70
REDNv4 [62] S100 100% 0.87 0.95 0.90 0.72 0.80 0.79 0.64 0.83 0.83 0.76 0.81

FgSegNet-S-51 [15]# 50% 100% 0.79 0.86 0.9 0.78 0.78 0.79 0.32 0.81 0.83 0.58 0.74
FgSegNet-S-55 [15]# 50% 50% 0.77 0.84 0.84 0.74 0.70 0.82 0.33 0.78 0.72 0.57 0.71
FgSegNet-M-51 [15]# 50% 100% 0.73 0.93 0.83 0.76 0.75 0.77 0.32 0.82 0.79 0.6 0.73
FgSegNet-M-55 [15]# 50% 50% 0.72 0.92 0.76 0.69 0.61 0.81 0.32 0.82 0.73 0.57 0.70

MSFS-51 [49]# 50% 100% 0.85 0.90 0.91 0.55 0.68 0.87 0.61 0.94 0.91 0.70 0.79
MSFS-55 [49]# 50% 50% 0.8 0.89 0.88 0.50 0.7 0.82 0.55 0.93 0.86 0.67 0.76

3DCD-51 50% 100% 0.94 0.93 0.83 0.87 0.90 0.86 0.76 0.89 0.87 0.94 0.88
3DCD-55 50% 50% 0.95 0.91 0.81 0.85 0.83 0.87 0.74 0.88 0.85 0.92 0.86

LOVO: Leave-one-video-out, RS: Random Selection, S50: Selected 50 frames; 3DCD-51: Training with 50% of frames and testing with 100% frames;
3DCD-55: Training with 50% of frames and testing with remaining 50% of frames; NA: Data not available. #These results are computed by training and

evaluating the existing methods in the exact same SDE setup as done for the proposed 3DCD

used in training the network. The quantitative performance of the proposed 3DCD in the SIE setup is presented in
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TABLE V
COMPARATIVE F-SCORE PERFORMANCE IN SIE FRAMEWORK ON LASIESTA DATASET

Method ISI-2 ICA-2 IOC-2 IIL-2 IMB-2 IBS-2 OCL-2 ORA-2 OSN-2 OSU-2 Avg

Zivkovik [1] 0.89 0.75 0.91 0.31 0.80 0.52 0.82 0.80 0.24 0.88 0.69
Maddalena1 [63] 0.85 0.74 0.85 0.38 0.68 0.45 0.85 0.86 0.46 0.86 0.70
Maddalena2 [64] 0.94 0.87 0.95 0.23 0.85 0.40 0.88 0.86 0.71 0.88 0.76

Cuevas1 [65] 0.76 0.63 0.88 0.79 0.68 0.66 0.90 0.87 0.09 0.81 0.71
Haines [66] 0.81 0.87 0.95 0.81 0.71 0.73 0.96 0.90 0.04 0.90 0.77
Cuvas2 [67] 0.84 0.78 0.86 0.65 0.92 0.62 0.90 0.79 0.63 0.77 0.78

FgSegNet-S [15] 0.20 0.60 0.53 0.25 0.60 0.28 0.19 0.16 0.05 0.18 0.30
FgSegNet-M [15] 0.56 0.55 0.65 0.42 0.56 0.19 0.28 0.18 0.01 0.33 0.37

MSFS [49] 0.53 0.58 0.25 0.41 0.63 0.25 0.54 0.54 0.05 0.29 0.41
3DCD 0.86 0.49 0.93 0.85 0.79 0.87 0.87 0.87 0.49 0.83 0.79

ISI: Simple sequences, ICA: Camouflage, IOC: Occlusions, IIL: Illumination changes, IMB: Modified background, IBS: Bootstrap, OCL: Cloudy condition,
ORA: Rainy condition, OSN: Snowy condition, OSU: Sunny condition

TABLE VI
COMPARATIVE F-SCORE PERFORMANCE IN SDE FRAMEWORK ON LASIESTA DATASET

Method ISI ICA IOC IIL IMB IBS OCL ORA OSN OSU Avg

Zivkovik [1] 0.91 0.83 0.95 0.24 0.87 0.53 0.88 0.83 0.38 0.71 0.71
Maddalena1 [63] 0.87 0.85 0.91 0.61 0.76 0.42 0.88 0.84 0.58 0.80 0.75
Maddalena2 [64] 0.95 0.86 0.95 0.21 0.91 0.40 0.87 0.85 0.81 0.88 0.77

Cuevas1 [65] 0.79 0.74 0.85 0.79 0.73 0.58 0.86 0.81 0.46 0.73 0.73
Haines [66] 0.89 0.89 0.92 0.85 0.84 0.68 0.83 0.86 0.17 0.86 0.78
Cuvas2 [67] 0.88 0.84 0.78 0.65 0.89 0.66 0.88 0.82 0.78 0.72 0.79

FgSegNet-S-51 [15] 0.32 0.57 0.37 0.33 0.64 0.21 0.17 0.10 0.08 0.27 0.31
FgSegNet-S-55 [15] 0.39 0.60 0.23 0.39 0.60 0.22 0.23 0.15 0.13 0.37 0.33
FgSegNet-M-51 [15] 0.44 0.71 0.29 0.32 0.68 0.27 0.24 0.17 0.18 0.21 0.35
FgSegNet-M-55 [15] 0.43 0.69 0.31 0.32 0.71 0.21 0.22 0.18 0.19 0.25 0.35

MSFS-51 [49] 0.44 0.60 0.30 0.32 0.50 0.22 0.31 0.24 0.28 0.38 0.36
MSFS-55 [49] 0.39 0.40 0.37 0.35 0.64 0.36 0.41 0.35 0.31 0.37 0.40

3DCD-51 0.91 0.76 0.90 0.90 0.90 0.81 0.89 0.89 0.72 0.85 0.85
3DCD-55 0.87 0.82 0.91 0.92 0.89 0.72 0.87 0.90 0.69 0.85 0.84

TABLE VII
COMPARATIVE F-SCORE PERFORMANCE IN SIE FRAMEWORK ON

SBMI2015 DATASET

Method Cand CAV2 CaV HigII Avg

FgSegNet-S [15] 0.23 0.11 0.68 0.24 0.31
FgSegNet-M [15] 0.15 0.14 0.72 0.21 0.30

MSFS [49] 0.27 0.10 0.63 0.58 0.40
3DCD 0.67 0.62 0.53 0.59 0.60

Cand: Candela-m1.10, CAV2: CAVIAR2, CaV: CaVignal, HigII: HighwayII

Table II. The proposed method achieves overall precision,
recall, F-score, PWC of 0.90, 0.83, 0.86, 0.76, respectively.
These results reflect the robustness of the proposed network
in unseen videos. We also compare our work with 38 state-of-
the-art background subtraction methods as given in Table III.
Since 3DCD is evaluated in scene independent setup (video-
agnostic), comparing it with video-optimized or video-group-
optimized algorithms (evaluated in the SDE setups) would not
be fair. Thus, we only compare with the existing methods
evaluated in the SIE setup. We also train and evaluate the
existing networks FgSegNet-S [15], FgSegNet-M [15], MSFS
[49] in the same SIE setup for comparative analysis. The
proposed 3DCD outperforms FgSegNet-S, FgSegNetM, MSFS
by 41%, 48%, 36%, respectively in CDnet 2014. As the model
is evaluated on unseen videos, the proposed 3DCD is better
generalized to handle unseen scenarios.

LASIESTA: We evaluate the model on 10 completely un-

seen videos in LASIESTA dataset. The result of the proposed
3DCD is compared with the existing state-of-the-art methods
in Table V. Our model comfortably outperforms the existing
handcrafted and deep learning approaches for change detec-
tion. More specifically, our method significantly outperforms
the deep learning methods FgSegNet-S, FgSegNet-M, MSFS
by 49%, 42%, 38%, respectively, which highlights the superior
generalization capability of our model.

SBMI2015: We evaluate the proposed and the existing
methods in 4 completely unseen videos in SBMI2015. The
comparative results in the SIE setup are given in Table VII.
The 3DCD outperforms the existing state-of-the-art methods.
More specifically, it (0.60) achieves an overall 20% perfor-
mance improvement over the MSFS (0.40).

3) Quantitative results in the SDE setup: We also conduct
experiments in the SDE setup in order to present a comparative
analysis of the proposed model with existing deep learning
methods which prominently follow the SDE setup. For scene
dependent evaluation, we temporally divide the videos with a
50:50 ratio. The training is performed with the initial 50% of
frames and the evaluation is performed using the remaining
50% of frames as well as using the complete 100% frames.

CDnet 2014: The performance of the proposed and existing
state-of-the-art approaches in CDnet 2014 are tabulated in
Table IV. As shown in Table IV, the proposed 3DCD outper-
forms the best performing handcrafted method by 7%. It also
outperforms the recent state-of-the-art deep learning models
DeepBS [20], MSFgNet [25], SFEN(VGG) [38], VGG+CRF
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TABLE VIII
COMPARATIVE F-SCORE PERFORMANCE IN SDE FRAMEWORK ON SBMI2015 DATASET

Method Board Cand CAV1 CAV2 CaV Fol HAM HigI HigII HB2 IBt2 PAF Snel Avg

FgSegNet-S-51 [15] 0.88 0.25 0.67 0.04 0.52 0.68 0.62 0.83 0.42 0.78 0.72 0.88 0.22 0.58
FgSegNet-S-55 [15] 0.89 0.35 0.71 0.18 0.69 0.38 0.70 0.68 0.19 0.82 0.82 0.86 0.29 0.58
FgSegNet-M-51 [15] 0.89 0.27 0.74 0.19 0.61 0.60 0.67 0.73 0.36 0.79 0.78 0.87 0.42 0.61
FgSegNet-M-55 [15] 0.89 0.21 0.70 0.05 0.57 0.91 0.71 0.75 0.31 0.83 0.83 0.90 0.52 0.63

MSFS-51 [49] 0.89 0.25 0.55 0.10 0.65 0.86 0.46 0.82 0.59 0.63 0.57 0.88 0.68 0.61
MSFS-55 [49] 0.91 0.26 0.57 0.08 0.57 0.80 0.52 0.82 0.58 0.61 0.60 0.87 0.68 0.61

3DCD-51 0.85 0.31 0.81 0.58 0.55 0.66 0.63 0.73 0.79 0.67 0.74 0.80 0.74 0.68
3DCD-55 0.83 0.35 0.79 0.56 0.48 0.69 0.58 0.73 0.77 0.65 0.70 0.78 0.76 0.67

Cand: Candela-m1.10, CAV1: CAVIAR1, CAV2: CAVIAR2, CaV: CaVignal, Fol: Foliage, HAM: HallAndMonitor, HigI: HighwayI, HigII: HighwayII, HB2:
HumanBody2, IBt2: IBMtest2, PAF: PeopleAndFoliage, Sne: Snellen

[38], VGG+PSL+CRF [38], GoogLeNet+PSL +CRF [38],
EDS-CNN [16] by 8%, 3%, 15%, 13%, 5%, 14%, 2%,
respectively. The overall F-score of the proposed method is
equal to Cascade-CNN [48]. However, we notice multiple
issues with Cascade CNN: model is trained for each video
separately, training frames are selected manually and images
are processed into small-patches. In addition, the network only
learns the spatial features (single image as input) without
considering the temporal features (past history). Thus, the
results for Cascade CNN are highly optimized for each video
which is not suitable for real-world applications. Whereas, the
proposed 3DCD is an end-to-end network which incorporates
both spatial and temporal features for decision making. We
trained the existing deep learning models (FgSegNet-S [15],
FgSegNet-M [15], and MSFS [49]) in the same SDE setup for
a fair comparative analysis. The proposed 3DCD outperforms
FgSegNet-S, FgSegNet-M, MSFS by a margin of 14%, 15%,
9%, respectively in CDnet 2014.

LASIESTA: The comparison of 3DCD with the existing
methods in terms of average F-score in each video category
of LASIESTA is shown in Table VI. From quantitative analysis
(see in Table VI), it is evident that the proposed 3DCD
outperforms in five out of ten categories of LASIESTA for
foreground detection. The overall F-score of proposed 3DCD
(0.85) is significantly improved from 0.79 (highest value from
existing methods). Moreover, the 3DCD obtains 54%, 50%,
49% better F-score as compared to the deep learning methods
FgSegNet-S, FgSegNet-M, MSFS, trained and evaluated in the
same SDE setup for a fair evaluation.

SBMI2015: The SDE results for SBMI2015 is tabulated in
Table VIII. The overall F-score of the proposed method (0.68)
is 5% higher than the best performing existing method (0.63).
All the existing deep learning methods have been trained and
evaluated in the same SDE setup as the proposed method.

E. Qualitative Results

We also present a qualitative analysis through visual com-
parison in Fig. 7. We select videos from challenging scenarios
‘night videos’ (1st, 3rd, and 5th rows), ‘intermittent object
motion’ (2nd row), and ‘bad weather’ (4th) for evaluation.
The visual responses are compared with two deep learning
methods DeepBS [20], Cascade-CNN [48], and one hand-
crafted method IUTIS-5 [33]. It can be observed that 3DCD
produces the best visual results in all the categories. A robust

TABLE IX
ABLATION STUDY OF THE PROPOSED 3DCD IN BAD WEATHER (BW) AND

BASELINE (BL) CATEGORIES

Components

Model RC CMF FSR CFD Multi-Stream BW BL

3DCD Y Y Y Y Y 0.94 0.93
3DCD-v2 Y Y Y Y N 0.92 0.85
3DCD-v3 N Y Y Y Y 0.82 0.83
3DCD-v4 Y N Y Y Y 0.74 0.88
3DCD-v5 Y Y N Y Y 0.87 0.88
3DCD-v6 Y Y Y N Y 0.88 0.92
3DCD-v7 40 history frames as input 0.91 0.89
3DCD-v8 30 history frames as input 0.88 0.86
3DCD-v9 20 history frames as input 0.86 0.82

3DCD-v10 10 history frames as input 0.85 0.82

model must be able to eliminate both false positives (FP) and
false negatives (FN) across different scenarios. The existing
methods work well in certain categories but suffer from
either higher FP or FN in other categories. In contrast, our
proposed method can separate the salient foreground objects
from the background and highlight them uniformly across
different categories. For example, in row 2 and row 5, the
other approaches are able to detect foreground but they also
produce a lot of false positives which leads to performance
degradation in future processing of the segmented response.
The proposed 3DCD produces fewer false positives as com-
pared to other methods which is evident from its high precision
(0.90) reported in Table II. This is due to robust background
estimation with spatiotemporal feature aware GRBE block and
contrasting feature extraction in the FSR block. Thus, the
effective model design of 3DCD enables it to exclude the
background interference or noise of various types in different
categories, leading to improved performance in comparison to
other approaches.

F. Ablation Studies

We investigate the influence of different components of
3DCD through ablation experiments. In order to quantify
the effect of each block (MScE-MScD, RC, CMF, FSR, and
CFD) in 3DCD, we conduct multiple experiments over two
categories ‘bad weather’ and ‘baseline’. We used a single
stream encoder-decoder (3DCD-v2) to replace multi-schematic
MScE-MScD in order to assess its importance in 3DCD.
Similarly, we create variants of the proposed method by
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Fig. 7: Qualitative analysis of the proposed 3DCD with existing state-of-the-art approaches

TABLE X
THE PROPOSED 3DCD IS COMPARED WITH EXISTING DEEP LEARNING

METHODS IN TERMS OF SPEED, MEMORY AND COMPUTATIONAL
COMPLEXITY

Method #Param BMC *FPS

FCSN [18] ∼ 1.73M Yes NA
FgSegNet [15] ∼ 2.60M No 18

MFCN [17] ∼ 20.83M No 27
EDS-CNN [16] ∼ 18.64M Yes NA
Trip-Net [19] ∼ 0.33M Yes NA
DeepBS [20] ∼ 3.15M Yes NA

Deep-ConvNet [21] ∼ 4.40K × P Yes NA
Msednet [71] ∼ 2.88K Yes 9.7

Cascade-CNN [48] ∼ 0.25M No 13
VGG16 [38] ∼ 31.92M No 4.9

GoogLeNet [38] ∼ 6.02M No NA
ResNet50 [38] ∼ 23.78M No NA

2D-CNN-LSTM [24] ∼ 0.29M No 15
3D-CNN-LSTM [24] ∼ 0.22M No 24

3DCD 0.13M No 25

#Param: Number of trainable parameters, M: Millions, K: Thousands, P:
Number of image patches, NA: Not Available, BMC: Separate computation

cost for background modeling, *FPS is reported as given in the original
papers

dropping RC (3DCD-v3), CMF (3DCD-v4), FSR (3DCD-
v5), and CFD (3DCD-v6) blocks from the original network.
We also conduct experiments by taking 40, 30, 20, and
10 previous frames as input to the network, denoting the
models as 3DCD-v7, 3DCD-v8, 3DCD-v9, and 3DCD-v10,
respectively. These changes are made separately to the original
network design. The experimental results for all these variants
are shown in Table IX. It is evident that removing any of
the blocks from 3DCD results in lower performance in both

categories. Similarly, we observe that the network (3DCD)
with 50 input frames gives the best performance. The diverse
results in different combination of modules also shows that
certain components of 3DCD are more crucial than others in
a particular scenario. The customizable nature of the proposed
network is suitable for obtaining improved performance for a
specific scenario by making changes at the block level. These
results further justify the effectiveness of the original 3DCD
model design.

G. Speed, Memory, and Computational Complexity Analysis

The proposed network consists of 0.13 million trainable
parameters with a model size of 1.16 MB. The inference
speed is 40 ms per frame or approximately 25 frames per
second (FPS) over Titan Xp. We compare the proposed 3DCD
with the existing state-of-the-art change detection techniques
in terms of speed and computational complexity in Table X.
From Table X, it is evident that our method is computationally
more efficient than the existing approaches. Our method also
achieved superior speed (25 FPS) which is the highest amongst
all other methods except [17] which is computationally expen-
sive. The memory consumption of 3DCD is much lower (only
1.16 MB), which makes it suitable for embedded devices used
in real-time applications. Moreover, it can be noticed that the
small and shallower networks [18], [24] including 3DCD have
an overall advantage over the large/deeper networks [16], [17],
[38] in terms of overall performance (accuracy, computational
efficiency, and speed). Thus, an aptly designed small and
shallow network such as 3DCD which performs well in all
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three performance metrics is a valuable contribution for change
detection applications.

V. CONCLUSION

This paper introduces a novel spatiotemporal end-to-end
deep-learning model, 3DCD, for change detection in unseen
videos. We also propose a scene independent evaluation
scheme to segregate the train and test videos using a leave-one-
video-out strategy. The input to 3DCD consists of the current
and past history frames which enable online inference. The
network is comprised of multiple customizable learning blocks
to estimate the background, learn contrasting features for
motion estimation, and finally refine the contrasting features
through multi schematic encoder and decoder networks to
learn structurally diverse features at multiple scales. These ef-
fective modules increase the generalization capacity of 3DCD
to diverse change scenarios. Moreover, as opposed to the scene
dependent evaluation schemes widely used in the literature,
we present a scene independent data division and evaluation
strategy to effectively evaluate the generalization capability of
the designed network for real-world applications. We present
the theoretical analysis, constituent block visualization, quali-
tative, and quantitative results to demonstrate the effectiveness
of the proposed 3DCD. Experimental results on CDnet-2014,
LASIESTA, and SBMI2015 show that 3DCD outperforms
state-of-the-art algorithms in both scene independent and scene
dependent setups. This shows the great potential of 3D-CNN
based algorithms designed for unseen videos. Our online
model is very fast (speed-25 fps) and lightweight (model size-
0.16 MB), making it suitable for real-time applications.
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